Tulisan terkirim dikaitan (tagged) ‘Waktu Paruh’

Kimia Inti

13 Januari 2010

Dalam tulisan ini, kita akan mempelajari mengenai gejala radioaktivitas yang terjadi pada beberapa isotop, mempelajari radioaktivitas dan peluruhan radioaktif, mempelajari tentang partikel-partikel yang terlibat dalam peluruhan radioaktif, memahami konsep waktu paruh, mempelajari dasar-dasar reaksi fusi dan fisi isotop, serta mempelajari beberapa efek positif maupun negatif penggunaan zat radioaktif dalam kehidupan sehari-hari.

Untuk memahami kimia inti, kita perlu mengetahui struktur dasar atom (lihat : Perkembangan Teori Atom dan Konfigurasi Elektron). Inti merupakan padatan pada pusat atom yang berisi proton dan neutron.  Sementara itu, elektron berada di luar inti, yaitu pada tingkat-tingkat energi tertentu (kulit atom). Proton bermuatan positif, neutron tidak bermuatan, dan elektron bermuatan negatif. Atom yang bersifat netral mengandung jumlah proton dan elektron sama, tetapi jumlah neutron suatu atom pada unsur dapat bervariasi. Atom dari unsur-unsur yang sama dan memiliki jumlah neutron yang berbeda disebut sebagai isotop.

Radioaktivitas didefinisikan sebagai peluruhan spontan dari inti yang tidak stabil. Inti yang tidak stabil dapat terpecah menjadi dua partikel atau lebih lainnya dengan membebaskan sejumlah energi. Pemecahan ini dapat terjadi melalui beberapa cara , bergantung pada atom tertentu yang meluruh.

Kita dapat meramalkan suatu partikel radioaktif yang meluruh dengan mengetahui partikel lainnya. Ramalan ini melibatkan penyetaraan reaksi inti (reaksi inti adalah reaksi yang melibatkan perubahan pada struktur inti).

Penyetaraan reaksi inti merupakan suatu proses yang sangat sederhana. Dalam reaksi inti, kita mengenal istilah reaktan dan produk. Reaktan adalah senyawa yang digunakan, sedangkan produk merupakan senyawa baru yang terbentuk.

Untuk semua reaksi inti yang harus disetarakan, jumlah semua nomor atom pada sisi kiri tanda panah harus sama dengan jumlah semua nomor atom pada sisi kanan tanda panah. Hal yang sama juga berlaku untuk jumlah nomor massa.

Sebagai contoh, kita akan melakukan reaksi inti dengan menembakkan isotop klorin tertentu (Cl-35) dengan menggunakan neutron. Kita mengamati bahwa isotop Hidrogen (H-1) dihasilkan bersama-sama dengan isotop lainnya dan kita ingin mengetahui isotop apakah itu. Persamaan reaksi inti yang terjadi adalah sebagai berikut :

17Cl350n1 →  X1H1

Sekarang, untuk mengetahui isotop yang tidak diketahui (dinyatakan sebagai X), kita harus menyetarakan persamaan reaksi tersebut. Jumlah nomor atom di sisi kiri adalah 17 + 0 = 17. Jadi, kita juga harus mendapatkan jumlah nomor atom di sisi kanan sama, yaitu sama dengan 17. Sekarang, kita mempunyai nomor atom 1 di sisi kanan, sehingga nomor atom dari isotop yang tidak diketahui menjadi 17 – 1 = 16. Nomor atom ini diketahui sebagai unsur belerang (S).

Berikutnya, perhatikanlah nomor massa pada persamaan tersebut. Jumlah nomor massa di sisi kiri adalah 35 + 1 = 36. Kita menginginkan jumlah nomor massa yang sama di sisi kanan, yaitu 36. Sekarang, kita telah memiliki nomor massa 1 di sisi kanan. Dengan demikian, nomor massa dari isotop yang tidak diketahui menjadi 36 – 1 = 35. Ternyata X adalah isotop belerang (S-35).

Berikut ini adalah persamaan reaksi inti yang telah disetarakan :

17Cl350n1 →  16S351H1

Persamaan ini menyatakan transmutasi inti, yaitu perubahan suatu unsur menjadi unsur lainnya dan proses ini dapat dikendalikan oleh manusia. Reaksi perubahan inti unsur semacam ini lebih dikenal dengan istilah transmutasi buatan. Dari contoh di atas, S-35 adalah isotop belerang yang tidak terdapat secara alamiah. Isotop ini adalah isotop buatan manusia. Alkemiawan, yaitu kimiawan zaman dahulu, memimpikan perubahan suatu unsur menjadi unsur lainnya (umumnya plumbul/timbal menjadi emas). Akan tetapi, mereka tidak dapat pernah memulai prosesnya. Kini, para kimiawan, kadang-kadang dapat  mengubah satu unsur menjadi unsur lainnya.

Isotop tertentu bersifat tidak stabil, sehingga inti atom unsur mudah terpecah dengan mengalami peluruhan inti. Kadang-kadang, produk dari peluruhan inti bersifat tidak stabil, sehingga dapat mengalami pelruhan inti berikutnya. Sebagai contoh, bila U-238 (salah satu isotop radioaktif Uranium) pada awalnya mengalamu peluruhan, akan dihasilkan isotop Th-234. Isotop tersebut tidak stabil dan akan mengalami peluruhan kembali membentuk isotop Pa-234. Isotop tersebut pun tidak stabil. Akibatnya, akan terjadi peluruhan terus-menerus sampai akhirnya secara keseluruhan terdapat 14 tahapan untuk menghasilkan produk akhir berupa isotop Pb-206 yang bersifat stabil, sehingga peluruhan selanjutnya tidak akan terjadi.

Sebelum kita membahas bagaimana isotop radioaktif dapat meluruh, kita akan mempelajari mengapa isotop tertentu dapat meluruh. Inti memiliki semua proton yang bermuatan positif yang ada bersama-sama pada volum ruang yang sangat kecil. Semua proton ini akan saling tolak-menolak­ sehingga gaya yang biasanya menahan seluruh inti (perekat inti) kadang-kadang tidak dapat bekerja dengan baik. Akibatnya, inti akan terpecah atau mengalami peluruhan inti.

Semua unsur dengan 84 proton atau lebih bersifat tidak stabil, sehingga akhirnya mengalami peluruhan. Isotop lain yang intinya mengandung jumlah proton yang lebih juga dapat bersifat radioaktif. Radioaktivitas berhubungan dengan perbandingan neutron/proton di dalam inti atom. Jika perbandingan neutron/proton (n/p) terlalu tinggi (n/p > 1 ; terlalu banyak neutron ; terlalu sedikit proton), isotop dikatakan kaya neutron. Oleh karena itu, isotop bersifat tidak stabil. Sama halnya bila perbandingan neutron/proton (n/p) terlalu rendah (n/p < 1 ; terlalu sedikit neutron; terlalu banyak proton), isotop dikatakan kaya proton. Isotop semacam ini pun bersifat tidak stabil. Perbandingan neutron/proton (n/p) untuk unsur tertentu harus berada pada kisaran tertentu, sehingga unsur tersebut bersifat stabil. Itulah sebabnya isotop suatu unsur ada yang bersifat stabil dan ada pula yang bersifat radioaktif.

Terdapat tiga cara utama yang menyebabkan terjadinya peluruhan isotop radioaktif secara alami, antara lain :

  1. Pemancaran partikel alfa (α)
  2. Pemancaran partikel beta (β)
  3. Pemancaran radiasi gamma (γ)

Selain itu, terdapat pula dua cara peluruhan radioaktif yang kurang umum, yaitu :

  1. Pemancaran positron (β+)
  2. Penangkapan elektron (e-)

Pemancaran Partikel Alfa

Partikel alfa (α) didefinisikan sebagai partikel bermuatan positif pada inti helium. Partikel alfa tersusun atas dua proton dan dua neutron, sehingga dapat dinyatakan sebagai atom Helium-4 (He-4). Oleh karena partikel alfa terpecah dari inti atom radioaktif, partikel ini tidak memiliki elektron. Dengan demikian, partikel alfa memiliki muatan +2. Partikel alfa (α) merupakan partikel inti Helium yang bermuatan positif (kation dari unsur Helium, He2+). Akan tetapi, elektron pada dasarnya bebas, mudah untuk lepas dan muadh pula untuk didapat. Jadi, secara umum, partikel alfa (α) dapat dituliskan tanpa muatan karena akan dengan cepat mendapatkan 2 elektron dan menjadi atom Helium netral (bukan sebagai ion).

Unsur berat dan besar, seperti Uranium (U) dan Thorium (Th), cenderung melakukan pemancaran (emisi) partikel alfa. Peluruhan inti ini terjadi dengan cara membebaskan dua muatan positif (dua proton) dan empat satuan massa (dua proton + dua neutron). Suatu proses yang sangat hebat. Setiap kali partikel alfa dipancarkan (diemisikan), empat satuan massa hilang.

Sebagai contoh, isotop Radon-222 (Rn-222), dapat mengalami peluruhan dan memancarkan partikel alfa. Reaksi yang terjadi adalah sebagai berikut :

86Rn222 →  84Po2182He4

Dalam hal ini, isotop Radon-222 mengalami peluruhan inti dengan membebaskan partikel alfa. Isotop baru yang terbentuk pada proses peluruhan ini adalah isotop baru dengan nomor massa 218 (yang diperoleh dari 222 –  4) dan nomor atom 84 (yang diperoleh dari 86 – 2). Isotop tersebut adalah Polonium (Po).

Pemancaran Partikel Beta

Partikel beta (β) pada dasarnya adalah elektron yang dipancarkan dari inti. Kita tentu akan bertanya, bukankah elektron tidak terdapat di dalam inti atom?Bagaimana elektron dapat dipancarkan dari inti atom yang tidak mengandung elektron?Marilah kita mengikuti penjelasan berikut secara seksama.

Sebagai contoh, saya ingin membahas peluruhan yang terjadi pada isotop Iodin. Isotop Iodin-131 (I-131) digunakan dalam bidang medis sebagai isotop untuk mendeteksi dan mengobati kanker kelenjar gondok (tyroid). Isotop tersebut mengalami peluruhan dan memancarkan partikel beta. Reaksi yang terjadi  adalah sebagai berikut :

53I131 →  54Xe131 -1e0

Pada proses ini, isotop Iodin-131 (I-131) melepaskan partikel beta (elektron). Isotop baru yang dihasilkan memiliki nomor atom 54 dan nomor massa 131. Isotop tersebut adalah Xenon (Xe).

Perhatikanlah bahwa nomor massa tidak berubah dari I-131 menjadi Xe-131. Akan tetapi, nomor atomnya naik satu (dari 53 menjadi 54). Peristiwa yang terjadi di dalam inti atom iodin adalah perubahan neutron menjadi proton dan elektron.

0n1 →  1p1-1e0

Perubahan sebuah neutron menjadi sebuah proton akan diikuti dengan terbentuknya sebuah elektron. Elektron yang terbentuk dipancarkan dari inti atom sebagai partikel beta (β). Isotop dengan perbandingan n/p tinggi sering mengalami pemancaran beta (β). Hal ini terjadi karena peluruhan ini menyebabkan jumlah neutron berkurang satu dan jumlah proton bertambah satu, sehingga menurunkan perbandingan n/p.

Pemancaran Radiasi Gamma

Partikel alfa (α) dan partikel beta (β) mempunyai karakteristik materi. Keduanya memiliki massa tertentu dan menempati ruang. Namun, karena tidak ada perubahan massa yang berhubungan dengan pemancaran sinar gamma (γ), kita dapat menyatakan bahwa pemancaran sinar gamma (γ) sebagai pemancaran radiasi gamma (γ). Radiasi gamma (γ) sangat menyerupai sinar X, yaitu radiasi dengan energi tinggi dan memiliki panjang gelombang pendek (short wavelength). Radiasi sinar gamma umumnya disertai dengan pemancaran partikel alfa dan partikel beta. Tetapi, biasanya tidak dinyatakan pada persamaan reaksi inti yang disetarakan. Beberapa isotop, seperti Cobalt-60 (Co-60), melepaskan sejumlah besar radiasi sinar gamma. Isotop ini sering digunakan untuk pengobatan kanker dengan metode radiasi. Paramedis akan mengarahkan sinar gamma ke tumor, sehingga sinar tersebut diharapkan dapat merusaknya.

Pemancaran Positron

Pemancaran positron tidak terjadi pada isotop radioaktif yang meluruh secara alami, tetapi hal ini terjadi secara alami pada isotop radioaktif buatan manusia. Positron pada dasarnya merupakan elektron yang memiliki muatan positif. Positron dapat terbentuk bila proton di dalam inti atom meluruh menjadi neutron. Positron yang terbentuk ini kemudian dipancarkan dari inti atom.

Proses ini terjadi pada beberapa isotop, seperti isotop Kalium-40 (K-40). Reaksi yang terjadi adalah sebagai berikut :

19K40 →  18Ar40 +1e0

Isotop K-40 memancarkan positron, dan membentuk isotop baru dengan nomor massa 40 dan nomor atom 18. Isotop Argon-40 (Ar-40) telah terbentuk.

Perhatikanlah bahwa nomor massa tidak berubah dari K-40 menjadi Ar-40. Akan tetapi, nomor turun satu (dari 19 menjadi 18). Peristiwa yang terjadi di dalam inti atom kalium adalah perubahan proton menjadi neutron dan melepaskan positron.

1p1 →  0n1+1e0

Perubahan sebuah proton menjadi sebuah neutron akan diikuti dengan terbentuknya sebuah positron. Positron yang terbentuk dipancarkan dari inti atom sebagai partikel positron (β+). Isotop dengan perbandingan n/p rendah sering mengalami pemancaran positron (β+). Hal ini terjadi karena peluruhan ini menyebabkan jumlah proton berkurang satu dan jumlah neutron bertambah satu, sehingga menaikkan perbandingan n/p.

Penangkapan Elektron

Penangkapan elektron merupakan jenis peluruhan inti yang jarang terjadi. Dalam peluruhan ini, elektron dari tingkat energi yang lebih dalam (misalkan subkulit 1s) akan ditangkap oleh inti atom. Elektron tersebut akan bergabung  dengan proton pada inti atom membentuk neutron. Akibatnya, nomor atom berkurang satu dan nomor massanya tetap sama.

1p1 -1e0 →  0n1

Sebagai contoh, reaksi yang terjadi saat penangkapan elektron pada Polonium-204 (Po-204) sebagai berikut :

84Po204-1e0 →  83Bi204 +  sinar-X

Perubahan sebuah proton menjadi sebuah neutron dapat terjadi saat penangkapan sebuah elektron. Isotop dengan perbandingan n/p rendah dapat mengalami penangkapan elektron (e-). Hal ini terjadi karena reaksi ini menyebabkan jumlah proton berkurang satu dan jumlah neutron bertambah satu, sehingga menaikkan perbandingan n/p.

Penangkapan elektron pada subkulit 1s menyebabkan kekosongan pada subkulit 1s. Elektron yang berasal dari subkulit lain dengan level energi yang lebih tinggi akan “turun” untuk mengisi kekosongan ini disertai pembebasan sejumlah energi dalam bentuk sinar X yang tidak tampak.

Waktu Paruh dan Peluruhan Radioaktif

Jika kita dapat melihat sebuah atom isotop radioaktif, seperti U-238, kita tidak dapat meramalkan kapan atom tersebut akan meluruh. Peluruhan ini dapat terjadi dalam waktu beberapa milidetik atau mungkin membutuhkan waktu selama satu abad. Ternyata ada cara sederhana untuk mengetahuinya.

Dibutuhkan waktu tertentu bagi separuh dari atom radioaktif untuk meluruh dan tersisa setengah dari sebelumnya. Kemudian, dibutuhkan juga sejumlah waktu yang sama untuk separuh dari atom radioaktif yang sisa untuk meluruh dan sejumlah waktu yang sama untuk atom radioaktif sisa untuk meluruh dan seterusnya. Banyaknya waktu yang digunakan untuk separuh dari cuplikan meluruh disebut waktu paruh (t1/2).

Berikut ini adalah tabel hubungan waktu paruh (t1/2) dengan jumlah zat radioaktif yang masih tersisa setelah peluruhan :

Waktu Paruh (t1/2) Persentase Isotop Radioaktif yang Tersisa
0 100,00
1 50,00
2 25,00
3 12,50
4 6,25
5 3,125
6 1,5625
7 0,78 (hasil pembulatan)
8 0,39 (hasil pembulatan)
9 0,19 (hasil pembulatan)
10 0,09 (hasil pembulatan)

Perlu dipahami bahwa waktu paruh (t1/2) peluruhan isotop radioaktif tidak linear.  Peluruhan ini bersifat eksponensial. Jika kita ingin menentukan waktu atau jumlah yang tidak berhubungan dengan kelipatan sederhana pada waktu paruh, kita dapat menggunakan persamaan berikut :

ln (No/Nt) = (0,6963 t) / t1/2

Pada persamaan tersebut, ln adalah singkatan dari logaritma natural (logaritma dengan bilangan pokok e). No adalah jumlah isotop radioaktif mula-mula. Nt adalah jumlah radioisotop yang yang tertinggal pada waktu tertentu (t) dan t1/2 adalah waktu paruh radioisotop. Jika kita mengetahui waktu paruh (t1/2) dan jumlah isotop radioaktif mula-mula (No), kita dapat menggunakan persamaan ini untuk menghitung jumlah radioaktif sisa (Nt) setiap waktu.

Bentuk lain dari persamaan di atas adalah sebagai berikut :

Nt / No = (1/2)^ (t/t1/2)

Waktu paruh bisa menjadi sangat pendek atau sangat panjang. Tabel berikut menunjukkan waktu paruh (t1/2) dari beberapa jenis isotop radioaktif.

Radioisotop Radiasi yang Dipancarkan Waktu Paruh (t1/2)
Kr-94 β 1,4 detik
Rn-222 α 3,8 hari
I-131 β 8 hari
Co-60 γ 5,2 tahun
H-3 β 12,3 tahun
C-14 β 5730 tahun
U-235 α 4,5 miliar tahun
Re-187 β 70 miliar tahun

Cuplikan waktu paruh penting untuk diketahui, sebab dapat digunakan untuk menentukan kapan suatu bahan radioaktif aman untuk ditangani. Aturannya adalah suatu cuplikan dinyatakan aman bila radioaktivitasnya telah turun sampai di bawah batas pengamatan (ini terjadi setelah 10 kali waktu paruh). Jadi, jika radioaktif Iodin-131 (I-131) dengan waktu paruh (t1/2) = 8 hari dimasukkan ke dalam tubuh guna mengobati kanker thyroid, bahan ini akan hilang dalam 10 kali waktu paruh atau 80 hari. Hal ini penting untuk diketahui, sebab radioaktif yang digunakan sebagai pelacak medis yang dimasukkan ke dalam tubuh, digunakan oleh seorang dokter untuk melacak suatu saluran, menemukan suatu penghalang atau untuk pengobatan (terapi) kanker. Isotop radioaktif ini harus aktif dalam waktu yang cukup lama untuk pengobatan, tetapi juga harus cukup pendek, sehingga tidak merusak sel-sel atau organ-organ yang sehat.

Aplikasi waktu paruh yang sangat berguna adalah pada pelacakan radioaktif. Ini berhubungan dengan penentuan usia benda-benda kuno.

Karbon 14 (C-14) adalah isotop karbon radioaktif yang dihasilkan di atomosfer bagian atas oleh radiasi kosmis. Senyawa utama di atmosfer yang mengandung karbon adalah karbon dioksida (CO2). Sangat sedikit sekali jumlah karbon dioksida tang mengandung isotop C-14. Tumbuhan menyerap C-14 selama fotosintesis. Dengan demikian, C-14 terdapat dalam struktur sel tumbuhan. Tumbuhan kemudian dimakan oleh hewan, sehingga C-14 menjadi bagian dari struktur sel pada semua organisme.

Selama suatu organisme hidup, jumlah isotop C-14 dalam struktur selnya akan tetap konstan. Tetapi, bila organisme tersebut mati, jumlah C-14 mulai menurun. Para ilmuwan kimia telah mengetahui waktu paruh dari C-14, yaitu 5730 tahun. Dengan demikian, mereka dapat menentukan berapa lama organisme tersebut mati.

Pelacakan radioaktif dengan menggunakan isotop C-14 telah digunakan untuk menentukan usia kerangka yang ditemukan di situs-situs arkeologi. Belakangan ini, isotop C-14 digunakan untuk mengetahui usia Shroud of Turin (kain kafan dari Turin), yaitu sepotong kain linen pembungkus mayat manusia dengan gambaran seorang manusia tercetak diatasnya. Banyak yang berpikir bahwa itu adalah bahan pembungkus Nabi Isa. Tetapi, pada tahun 1988, pelacakan radiokarbon menemukan bahwa bahan tersebut berasal dari tahun 1200-1300 SM. Meskipun kita tidak mengetahui bagaimana bentuk orang itu tercetak pada kain kafan tersebut, pelacakan radioaktif C-14 membuktikan bahwa bahan tersebut bukan kain kafan Nabi Isa.

Pelacakan dengan isotop C-14 hanya dapat digunakan untuk menentukan usia sesuatu yang pernah hidup (organisme). Isotop ini tidak dapat digunakan untuk menentukan umur batuan bulan atau meteorit. Untuk benda-benda mati, para ilmuwan kimia menggunakan isotop lainnya, seperti Kalium 40 (K-40).

Pada tahun 1930-an, para ilmuwan menemukan bahwa beberapa reaksi inti dapat dimulai dan dikendalikan oleh manusia. Para ilmuwan biasanya menembakkan suatu isotop besar dengan isotop kedua yang lebih kecil (umumnya neutron). Tumbukan kedua isotop ini dapat menyebabkan isotop besar tersebut pecah menjadi dua unsur atau lebih. Dalam hal ini, isotop besar mengalami pemecahan inti (nuclear fission/fisi inti).

Sebagai contoh, pemecahan isotop U-235 menjadi dua isotop baru dapat dinyatakan dalam persamaan reaksi transmutasi berikut :

92U2350n1 →  56Ba14236Kr91 +  3 1n0

Reaksi jenis ini juga membebaskan energi dalam jumlah besar. Berasal dari manakah energi tersebut? Apabila pengukuran dilakukan dengan tingkat ketelitian yang sangat tinggi pada semua massa atom dan partikel subatom mula-mula, kemudian semua massa atom dan partikel subatom akhir, lalu membandingkan keduanya. Kita akan memperoleh hasil bahwa terdapat sejumlah massa yang “hilang”. Materi “hilang” selama reaksi inti. Hilangnya materi ini disebut sebagai pengurangan massa atau defek massa. Materi yang “hilang” ini berubah menjadi energi.

Kita dapat menghitung besarnya energi yang dihasilkan dari reaksi fisi selama reaksi inti dengan persamaan yang sangat sederhana, yang telah dikembangkan oleh Albert Einstein (lihat : Kisah Para Ilmuwan ; Albert Einstein), yaitu E = mc2. Pada persamaan ini, E adalah energi yang dihasilkan; m adalah massa yang “hilang” (defek massa); dan c adalah kecepatan cahaya (3,00 x 108 m/s). Kecepatan cahaya dikuadratkan membuat bagian dari persamaan ini mempunyai bilangan yang sangat besar, sehingga bila dikalikan dengan jumlah massa yang kecil hasilnya tetap merupakan sejumlah energi yang besar.

Reaksi Berantai (Chain Reaction)

Pada persamaan fisi isotop U-235 (lihat reaksi di atas) digunakan sebuah neutron. Akan tetapi, reaksi kembali membentuk tiga neutron. Ketiga neutron tersebut, apabila semuanya bertemu dengan isotop U-235 lainnya, dapat memulai pemecahan (fisi) lainnya, yang akan menghasilkan lebih banyak neutron. Ini merupakan efek domino yang telah lama diketahui manusia. Dalam istilah kimia inti, serangkaian pemecahan inti ini disebut reaksi beranai (chain reaction).

Chain reaction ini bergantung pada banyaknya neutron yang dilepaskan, bukan pada banyaknya neutron yang digunakan selama reaksi inti. Saat kita menuliskan persamaan reaksi fisi isotop U-238 (isotop Uranium yang lebih melimpah di alam), kita hanya menggunakan satu neutron dan mendapatkan satu neutron pula. Reaksi berantai tidak dapat terjadi pada isotop U-238. Hanya isotop yang dapat menghasilkan neutron berlebihan pada pemecahannya yang dapat mengalami chain reaction. Jenis isotop ini dikatakan dapat pecah. Hanya ada dua isotop utama yang dapat dipecah selama reaksi inti, yaitu U-235 dan Pu-239.

Rahasia untuk mengendalikan reaksi berantai adalah dengan mengendalikan jumlah neutron. Apabila neutron dapat dikendalikan, energi yang dilepaskan dapat dikendalikan. Itulah yang dilakukan oleh para ilmuwan pada Pembangkit Listrik Tenaga Nuklir (PLTN).

Dalam beberapa hal, pembangkit listrik tenaga nuklir sama dengan pembangkit listrik konvensional yang menggunakan bahan bakar fosil . Pada jenis pembangkit listrik ini, bahan bakar fosil (batu bara, minyak bumi, gas alam) dibakar, dan panasnya digunakan untuk mendidihkan air yang digunakan untuk membuat uap air. Uap airnya kemudian digunakan untuk menggerakkan turbin yang disambungkan ke generator yang menghasilakn listrik.

Perbedaan nyata antara pembangkit listrik konvensional dan nuklir adalah pembangkit listrik tenaga nuklir menghasilkan panasnya melalui reaksi berantai pemecahan inti isotop.

Di Amerika, terdapat kira-kira 100 reaktor nuklir yang menghasilakn sekitar 20 persen kebutuhan listrik negara. Di Perancis, hampir 80 persen listrik negara dihasilkan melalui chain reaction. Keuntungan penggunaan tenaga nuklir adalah tidak perlu membakar bahan bakar fosil (menghemat sumber bahan bakar fosil untuk menghasilkan plastik dan obat-obatan) dan tidak ada produk hasil pembakaran seperti CO2, SO2, dan lainnya yang dapat mencemari air dan udara. Akan tetapi, masih terdapat sejumlah masalah yang berhubungan dengan penggunaan tenaga nuklir.

Masalah pertama adalah biaya. Masalah berikutnya adalah ketersediaan isotop U-235 sangat terbatas. Dari semua Uranium yang terdapat di alam, hanya sekitar 0,75 persennya merupakan U-235. Sebagian besar merupakan isotop U-238 yang tidak dapat dipecah. Keterbatasan jumlah bahan bakar nuklir serupa dengan keterbatasan sumber daya bahan bakar fosil yang tersedia di alam. Akan tetapi, yang menjadi masalah utama (krusial) penggunaan tenaga nuklir adalah tingkat keamanan penggunaan nuklir dan pengelolaan limbah nuklir. Reaktor nuklir harus benar-benar aman dan tidak menghasilkan radiasi yang membahayakan kesehatan para petugas maupun penduduk di area reaktor nuklir berdiri. Sebagai tambahan, limbah yang dihasilkan harus diolah sedemikian rupa agar tetap aman dan tidak membahayakan kesehatan manusia.

Penggabungan Inti (Nuclear Fussion)

Segera setelah proses pemecahan (fisi) ditemukan, proses lainnya yang disebut fusi (penggabungan) ditemukan. Reaksi fusi pada dasarnya merupakan kebalikan dari reaksi fisi. Pada reaksi fisi, inti yang lebih berat dipecah menjadi inti yang lebih kecil. Sebaliknya, pada reaksi fusi, inti yang lebih ringan digabung menjadi inti yang lebih berat.

Proses penggabungan (fusi) adalah reaksi yang memberikan tenaga pada matahari. Di matahari, pada serangkaian reaksi inti, empat isotop H-1 digabung menjadi He-4 dengan membebaskan sejumlah besar energi. Di bumi, dua isotop hidrogen lainnya yang digunakan dalam reaksi fusi adalah Deuterium (H-2) dan Tritium (H-3). Deuterium adalah isotop hidrogen yang ada dalam jumlah kecil, tetapi masih tetap melimpah. Sedangkan Tritium tidak terjadi secara alami, tetapi dapat dengan mudah diproduksi dengan cara menembakkan Deuterium dengan neutron. Reaksi penggabungan antara Deuterium dan Tritium adalah sebagai berikut :

1H2 1H3 →  2He40n1

Aplikasi penggabungan inti yang pertama kali adalah pada penggunaan bom Hidrogen yang dilakukan oleh militer. Bom Hidrogen mempunyai tenaga 1000 kali lebih kuat dari bom atom biasa.

Tujuan penggunaan reaksi fusi adalah menghasilkan energi dalam jumlah melimpah. Permasalahan yang dihadapi sekarang adalah sulitnya mengendalikan reaksi fusi.  Jika energi dari reaksi ini dapat dikendalikan dan dilepaskan secara perlahan-lahan, maka dapat digunakan untuk menghasilkan listrik. Cara ini akan memberikan persediaan energi yang tidak terbatas sekaligus tidak menghasilkan polutan yang membahayakan atmosfer.

Efek Radiasi

Radiasi dapat menyebabkan dua efek utama pada tubuh, yaitu merusak sel dengan panas dan mengionisasi sekaligus memecahkan sel. Radiasi menghasilkan panas. Panas ini dapat merusak jaringan, sama seperti yang terjadi pada kulit yang terbakar matahari. Faktanya, istilah luka bakar radiasi umumnya digunakan untuk menjelaskan kerusakan kulit dan jaringan karena adanya panas.

Cara utama radiasi merusak tubuh organisme adalah melalui pemecahan sel dan ionisasi. Partikel radioaktif dan radiasi mempunyai energi kinetik yang besar. Saat partikel ini menyerang sel di dalam tubuh, partikel dapat memecah (merusak) sel ata mengionisasi sel, sehingga sel menjadi ion-ion (bermuatan listrik) dengan menghilangkan satu elektron.  Ionisasi ini akan melemahkan ikatan dan dapat menyebabkan kerusakan, pemusnahan, atau mutasi DNA pada sel.

Referensi:

Andy. 2009. Pre-College Chemistry.

Chang, Raymond. 2007. Chemistry Ninth Edition. New York: Mc Graw Hill.

Moore, John T. 2003. Kimia For Dummies. Indonesia: Pakar Raya.

Kinetika Kimia

9 Oktober 2009

Dalam tulisan ini, kita akan mempelajari pengertian laju reaksi, menuliskan rumus laju reaksi, menentukan orde (tingkat) reaksi, menghitung laju reaksi dari data eksperimen, mengkaji konsep laju reaksi dari segi teori tumbukan efektif, serta mempelajari faktor-faktor yang mempengaruhi laju suatu reaksi kimia.

Kinetika Kimia (Chemical Kinetics) adalah salah satu cabang ilmu kimia yang mengkaji mengenai seberapa cepat suatu reaksi kimia berlangsung. Dari berbagai jenis reaksi kimia yang telah dipelajari para ilmuwan, ada yang berlangsung dalam waktu yang sangat singkat (reaksi berlangsung cepat), seperti reaksi pembakaran gas metana. Di sisi lain, ada pula reaksi yang berlangsung dalam waktu yang lama (reaksi berlangsung lambat), seperti reaksi perkaratan (korosi) besi. Cepat lambatnya suatu reaksi kimia dapat dinyatakan dalam besaran laju reaksi.

Laju reaksi didefinisikan sebagai perubahan konsentrasi reaktan atau produk per satuan waktu. Satuan laju reaksi adalah M/s (Molar per detik). Sebagaimana yang kita ketahui, reaksi kimia berlangsung dari arah reaktan menuju produk. Ini berarti, selama reaksi kimia berlangsung, reaktan digunakan (dikonsumsi) bersamaan dengan pembentukan sejumlah produk. Dengan demikian, laju reaksi dapat dikaji dari sisi pengurangan konsentrasi reaktan maupun peningkatan konsentrasi produk.

Secara umum, laju reaksi dapat dinyatakan dalam persamaan sederhana berikut :

A  ——->   B

laju reaksi  =  - ∆ [A] / ∆ t               atau

laju reaksi  =  + ∆ [B] / ∆ t

Tanda – (negatif) menunjukkan pengurangan konsentrasi reaktan

Tanda + (positif) menunjukkan peningkatan konsentrasi produk

Laju reaksi berhubungan erat dengan koefisien reaksi. Untuk reaksi kimia dengan koefisien reaksi yang bervariasi, laju reaksi harus disesuaikan dengan koefisien reaksi masing-masing spesi. Sebagai contoh, dalam reaksi 2A ——-> B, terlihat bahwa dua mol A dikonsumsi untuk menghasilkan satu mol B. Hal ini menandakan bahwa laju konsumsi spesi A adalah dua kali laju pembentukan spesi B. Dengan demikian, laju reaksi dapat dinyatakan dalam persamaan berikut :

laju reaksi  =  - 1 ∆ [A] / 2.∆ t                  atau

laju reaksi  =  + ∆ [B] / ∆ t

Secara umum, untuk reaksi kimia dengan persamaan reaksi di bawah ini,

aA + bB  ——->  cC + dD

laju reaksi masing-masing spesi adalah sebagai berikut :

laju reaksi  =  - 1 ∆ [A] / a.∆ t =  – 1 ∆ [B] / b.∆ t  =  + 1 ∆ [C] / c.∆ t  =  + 1 ∆ [D] / d.∆ t

Laju suatu reaksi kimia sangat dipengaruhi oleh besarnya konsentrasi reaktan yang digunakan dalam reaksi. Semakin besar konsentrasi reaktan yang digunakan, laju reaksi akan meningkat. Di samping itu, laju reaksi juga dipengaruhi oleh nilai konstanta laju reaksi (k). Konstanta laju reaksi (k) adalah perbandingan antara laju reaksi dengan konsentrasi reaktan. Nilai k akan semakin besar jika reaksi berlangsung cepat, walaupun dengan konsentrasi reaktan dalam jumlah kecil. Nilai k hanya dapat diperoleh melalui analisis data eksperimen, tidak berdasarkan stoikiometri maupun koefisien reaksi.

Hukum laju reaksi (The Rate Law) menunjukkan korelasi antara laju reaksi (v) terhadap konstanta laju reaksi (k) dan konsentrasi reaktan yang dipangkatkan dengan bilangan tertentu (orde reaksi). Hukum laju reaksi dapat dinyatakan dalam persamaan berikut :

aA + bB  ——->  cC + dD

v  =  k [A]x [B]y

x dan y adalah bilangan perpangkatan (orde reaksi) yang hanya dapat ditentukan melalui eksperimen. Nilai x maupun y tidak sama dengan koefisien reaksi a dan b.

Bilangan perpangkatan x dan y memperlihatkan pengaruh konsentrasi reaktan A dan B terhadap laju reaksi. Orde total (orde keseluruhan) atau tingkat reaksi adalah jumlah orde reaksi reaktan secara keseluruhan. Dalam hal ini, orde total adalah x + y.

Untuk menentukan orde reaksi masing-masing reaktan, berikut ini diberikan data hasil eksperimen reaksi antara F2 dan ClO2.

F2(g) +  2 ClO2(g) ——-> 2 FClO2(g)

No.

[F2] (M)

[ClO2] (M)

laju reaksi (M/s)

1

0,10

0,010

1,2 x 10-3

2

0,10

0,040

4,8 x 10-3

3

0,20

0,010

2,4 x 10-3

Dengan mempelajari data nomor 1 dan 3, terlihat bahwa peningkatan konsentrasi F2 sebesar dua kali saat konsentrasi ClO2 tetap menyebabkan peningkatan laju reaksi sebesar dua kali. Ini menunjukkan bahwa peningkatan konsentrasi F2 sebanding dengan peningkatan laju reaksi. Dengan demikian, orde reaksi F2 adalah satu. Sementara, dari data nomor 1 dan 2, terlihat bahwa peningkatan konsentrasi ClO2 sebesar empat kali saat konsentrasi F2 tetap menyebabkan peningkatan laju reaksi sebesar empat kali pula. Hal ini menunjukkan bahwa peningkatan konsentrasi ClO2 juga berbanding lurus (sebanding) dengan peningkatan laju reaksi. Oleh karena itu, orde reaksi ClO2 adalah satu. Orde total reaksi tersebut adalah dua. Persamaan laju reaksi dapat dinyatakan dalam bentuk berikut :

v  =  k [F2] [ClO2]

Konstanta laju reaksi (k) dapat diperoleh dengan mensubstitusikan salah satu data percobaan ke dalam persamaan laju reaksi. Dalam hal ini, saya menggunakan data nomor 1. Persamaan laju reaksi setelah disubstitusikan dengan data eksperimen akan berubah menjadi sebagai berikut :

1,2 x 10-3 =  k (0,10) (0,010)

k = 1,2 / M.s

Hukum laju reaksi dapat digunakan untuk menghitung laju suatu reaksi melalui data konstanta laju reaksi dan konsentrasi reaktan. Hukum laju reaksi juga dapat digunakan untuk menentukan konsentrasi reaktan setiap saat selama reaksi kimia berlangsung. Kita akan mempelajari laju reaksi dengan orde reaksi satu, dua, dan nol.

Reaksi Orde Satu

Reaksi dengan orde satu adalah reaksi dimana laju bergantung pada konsentrasi reaktan yang dipangkatkan dengan bilangan satu. Secara umum, reaksi dengan orde satu dapat diwakili oleh persamaan reaksi berikut :

A ——->  Produk

Laju reaksi dapat dinyatakan dalam persamaan :  v  =  – ∆ [A]/∆ t

Laju reaksi juga dapat dinyatakan dalam persamaan :  v  =  k [A]

Satuan k dapat diperoleh dari persamaan :  k  = v/[A]  =  M.s-1/M  =  s-1 atau  1/s

Dengan menggabungkan kedua persamaan laju reaksi :  – ∆[A]/∆ t  =  k [A]

Penyelesaian dengan kalkulus, akan diperoleh persamaan berikut :

ln  { [A]t / [A]0 }=  – kt               atau

ln [A]t =  – kt  + ln [A]0

ln  =  logaritma natural (logaritma dengan bilangan pokok e)

[A]0 =  konsentrasi saat t = 0 (konsentrasi awal sebelum reaksi)

[A]t =  konsentrasi saat t = t (konsentrasi setelah reaksi berlangsung selama t detik)

Reaksi Orde Dua

Reaksi dengan orde dua adalah reaksi dimana laju bergantung pada konsentrasi satu reaktan yang dipangkatkan dengan bilangan dua atau konsentrasi dua reaktan berbeda yang masing-masing dipangkatkan dengan bilangan satu. Kita hanya akan membahas tipe satu reaktan yang dipangkatkan dengan bilangan dua. Persamaan reaksi yang terjadi adalah sebagai berikut :

A ——-> Produk

Laju reaksi dapat dinyatakan dalam persamaan :  v  =  – ∆ [A]/∆ t

Laju reaksi juga dapat dinyatakan dalam persamaan :  v  =  k [A]2

Satuan k dapat diperoleh dari persamaan :  k  = v / [A]2 =  M.s-1/M2 =  s-1/M atau  1/M.s

Dengan menggabungkan kedua persamaan laju reaksi :  – ∆[A]/∆ t  =  k [A]2

Penyelesaian dengan kalkulus, akan diperoleh persamaan berikut :

1 /  [A]t =  kt   +   1 / [A]0

Reaksi Orde Nol

Reaksi dengan orde nol adalah reaksi dimana laju tidak bergantung pada konsentrasi reaktan. Penambahan maupun mengurangan konsentrasi reaktan tidak mengubah laju reaksi. Persamaan reaksi yang terjadi adalah sebagai berikut :

A  ——->  Produk

Laju reaksi dapat dinyatakan dalam persamaan :  v  =  – ∆ [A]/∆ t

Laju reaksi juga dapat dinyatakan dalam persamaan :  v  =  k [A]0 atau  v  =  k

Satuan k dapat diperoleh dari persamaan :  k  = v / [A]0 =  v  =  M.s-1 atau  M / s

Dengan menggabungkan kedua persamaan laju reaksi :  – ∆[A]/∆ t  =  k [A]0

Dengan menggabungkan kedua persamaan laju reaksi :  – ∆[A]/∆ t  =  k

Penyelesaian dengan kalkulus, akan diperoleh persamaan berikut :

[A]t =  -kt  +  [A]0

Selama reaksi kimia berlangsung, konsentrasi reaktan berkurang seiring peningkatan waktu reaksi. Salah satu metode yang dapat digunakan untuk membedakan reaksi orde nol, orde satu, dan orde dua adalah melalui waktu paruh. Waktu paruh (t1/2) adalah waktu yang dibutuhkan agar konsentrasi reaktan menjadi setengah dari konsentrasi semula. Persamaan waktu paruh untuk masing-masing orde reaksi adalah sebagai berikut :

Orde Satu :  t1/2 =  ln 2 / k  =  0,693 / k   (waktu paruh tidak bergantung pada konsentrasi awal reaktan)

Orde Dua :   t1/2 =  1 / k.[A]0 (waktu paruh berbanding terbalik dengan konsentarsi awal reaktan)

Orde Nol :   t1/2 =  [A]0 / 2k   (waktu paruh berbanding lurus dengan konsentrasi awal reaktan)

Agar reaksi kimia dapat terjadi, reaktan harus bertumbukan. Tumbukan ini memindahkan energi kinetik (energi gerak) dari satu molekul ke molekul lainnya, sehingga masing-masing molekul teraktifkan. Tumbukan antarmolekul memberikan energi yang diperlukan untuk memutuskan ikatan sehingga ikatan baru dapat terbentuk.

Kadang-kadang, walaupun terjadi tumbukan, energi kinetik yang tersedia tidak cukup untuk dipindahkan sehingga molekul tidak dapat bergerak dengan cukup cepat. Kita dapat mengatasi hal ini dengan memanaskan campuran reaktan. Suhu adalah ukuran energi kinetik rata-rata dari molekul tersebut; menaikkan suhu akan meningkatkan energi kinetik yang ada untuk memutuskan ikatan-ikatan ketika tumbukan.

Saat tumbukan antarmolekul terjadi, sejumlah energi kinetik akan digunakan untuk memutuskan ikatan. Jika energi kinetik molekul besar, tumbukan yang terjadi mampu memutuskan sejumlah ikatan. Selanjutnya, akan terjadi pembentukan kembali ikatan baru. Sebaliknya, jika energi kinetik molekul kecil, tidak akan terjadi tumbukan dan pemutusan ikatan. Dengan kata lain, untuk memulai suatu reaksi kimia, tumbukan antarmolekul harus memiliki total energi kinetik minimum sama dengan atau lebih dari energi aktivasi (Ea), yaitu jumlah energi minimum yang diperlukan untuk memulai suatu reaksi kimia. Saat molekul bertumbukan, terbentuk spesi kompleks teraktifkan (keadaan transisi), yaitu spesi yang terbentuk sementara sebagai hasil tumbukan antarmolekul sebelum pembentukan produk.

A  +  B         ——->         AB*          ——->       C  +  D

reaktan                        keadaan transisi produk

Konstanta laju reaksi (k) bergantung pada temperatur (T) reaksi dan besarnya energi aktivasi (Ea). Hubungan k, T, dan Ea dapat dinyatakan dalam persamaan Arrhenius sebagai berikut :

k  =  A e –Ea / RT atau       ln k  =  ln A  -   Ea / R.T

k  =  konstanta laju reaksi

Ea =  energi aktivasi (kJ/mol)

T  =  temperatur mutlak (K)

R  =  konstanta gas ideal (8,314 J/mol.K)

e =  bilangan pokok logaritma natural (ln)

A  =  konstanta frekuensi tumbukan (faktor frekuensi)

Dari persamaan Arrhenius terlihat bahwa laju reaksi (dalam hal ini diwakili konstanta laju reaksi) semakin besar saat reaksi terjadi pada temperatur tinggi yang disertai dengan energi aktivasi rendah.

Kadang-kadang, walaupun telah terjadi tumbukan dengan energi kinetik yang cukup, reaksi tetap tidak menghasilkan produk. Hal ini disebabkan oleh molekul yang tidak mengalami tumbukan pada titik yang tepat. Tumbukan yang efektif untuk menghasilkan produk berkaitan erat dengan faktor orientasi dan sisi aktif molekul bersangkutan. Dengan demikian, molekul harus bertumbukan pada arah yang tepat atau dipukul pada titik yang tepat agar reaksi dapat terjadi. Sebagai contoh, reaksi antara molekul A-B dengan C membentuk molekul C-A dan B.

A-B  +  C  ——->  C-A  +  B

Terlihat bahwa untuk menghasilkan produk molekul C-A, zat C harus bertumbukan dengan molekul A-B pada ujung A. Jika zat C menumbuk molekul A-B pada ujung B, tidak aka ada produk yang dihasilkan. Ujung A dari molekul A-B dikenal dengan istilah sisi aktif, yaitu tempat pada molekul dimana tumbukan harus terjadi agar reaksi dapat menghasilkan produk. Saat zat C menumbuk ujung A pada molekul A-B, akan ada kesempatan untuk memindahkan cukup energi untuk memutus ikatan A-B. Setelah ikatan A-B putus, ikatan C-A dapat terbentuk. Persamaan untuk proses tersebut dapat digambarkan dengan cara berikut :

C∙∙∙∙∙∙∙A∙∙∙∙∙B  ——->  C-A  +  B

Jadi, agar reaksi ini dapat terjadi, harus terdapat tumbukan antara zat C dengan molekul A-B pada sisi aktifnya. Tumbukan antara zat C dengan molekul A-B harus memindahkan cukup energi untuk memutuskan ikatan A-B (pemutusan ikatan memerlukan energi) sehingga memungkinkan ikatan C-A terbentuk (pembentukan ikatan melepaskan energi).

Laju reaksi berkaitan dengan frekuensi tumbukan efektif yang terjadi antarmolekul. Apabila frekuensi tumbukan efektif semakin besar, tumbukan antarmolekul semakin sering terjadi, mengakibatkan produk terbentuk dalam waktu yang singkat. Dengan meningkatkan frekuensi tumbukan efektif antarmolekul, produk dalam jumlah besar dapat dihasilkan dalam waktu yang singkat. Beberapa faktor yang dapat mengubah jumlah frekuensi tumbukan efektif antarmolekul , antara lain :

1. Sifat reaktan dan ukuran partikel reaktan

Agar reaksi dapat terjadi, harus terdapat tumbukan antarmolekul pada sisi aktif molekul. Semakin besar dan kompleks molekul reaktan, semakin kecil pula kesempatan terjadinya tumbukan di sisi aktif. Kadang-kadang, pada molekul yang sangat kompleks, sisi aktifnya seluruhnya tertutup oleh bagian lain dari molekul, sehingga tidak terjadi reaksi. Secara umum, laju reaksi akan lebih lambat bila reaktannya berupa molekul yang besar dan kompleks (bongkahan maupun lempengan). Laju reaksi akan lebih cepat bila reaktan berupa serbuk dengan luas permukaan kontak yang besar. Semakin luas permukaan untuk dapat terjadi tumbukan, semakin cepat reaksinya.

2. Konsentrasi reaktan

Menaikkan jumlah tumbukan akan mempercepat laju reaksi. Semakin banyak molekul reaktan yang bertumbukan, semakin cepat reaksi tersebut. Sepotong kayu dapat terbakar di udara (yang mengandung gas oksigen 20%), tetapi kayu tersebut akan terbakar dengan jauh lebih cepat di dalam oksigen murni. Dengan mempelajari efek konsentrasi terhadap laju reaksi, kita dapat menentukan reaktan mana yang lebih mempengaruhi laju reaksi (ingat tentang orde reaksi).

3. Tekanan pada reaktan yang berupa gas

Tekanan pada reaktan yang berupa gas pada dasarnya mempunyai pengaruh yang sama dengan konsentrasi. Semakin tinggi tekanan reaktan, semakin cepat laju reaksinya. Hal ini disebabkan adanya kenaikan jumlah tumbukan.  Peningkatan tekanan dapat memperkecil volume ruang sehingga molekul semakin mudah bertumbukan satu sama lainnya.

4. Suhu

Secara umum, menaikkan suhu menyebabkan laju reaksi meningkat. Pada kimia organik, ada aturan umum yang mengatakan bahwa menaikkan suhu 10°C akan menyebabkan kelajuan reaksi menjadi dua kali lipat. Kenaikan suhu dapat meningkatkan jumlah tumbukan antarmolekul. Menaikkan suhu menyebabkan molekul bergerak dengan lebih cepat, sehingga terdapat peningkatan kesempatan bagi molekul untuk saling bertumbukan dan bereaksi. Menaikkan suhu juga menaikkan energi kinetik rata-rata molekul. Energi kinetik minimum yang dimiliki molekul harus sama atau lebih besar dari energi aktivasi agar reaksi dapat berlangsung. Reaktan juga harus bertumbukan pada sisi aktifnya. Kedua faktor inilah yang menentukan apakah suatu reaksi berlangsung atau tidak.

5. Katalis (Katalisator)

Katalis adalah zat yang menaikkan laju reaksi tanpa dirinya sendiri berubah di akhir reaksi. Hal ini berarti katalis terbentuk kembali setelah reaksi berakhir. Katalis dapat menaikkan laju reaksi dengan memilih mekanisme reaksi lain yang energi aktivasinya lebih rendah dari mekanisme semula.

A  +  B  ——->   C  +  D        (tanpa katalis)

A  +  B  ——->   C  +  D        (dengan katalis)

kdengan katalis > ktanpa katalis sehingga vdengan katalis > vtanpa katalis

Laju reaksi akan lebih cepat jika puncak energi aktivasinya lebih rendah. Hal ini berarti reaksi akan lebih mudah terjadi. Total energi reaktan dan produk tidak dipengaruhi oleh katalis. Hal ini berarti entalpi (∆H) reaksi tidak dipengaruhi oleh katalis. Katalis dapat menurunkan energi aktivasi reaksi dengan satu dari dua cara berikut :

1. Memberikan permukaan dan orientasi

Terjadi pada katalis heterogen. Katalis ini hanya mengikat satu molekul pada permukaan sambil memberikan orientasi yang sesuai untuk memudahkan jalannya reaksi. Katalis heterogen adalah katalis yang berada pada fasa yang berbeda dengan reaktan. Katalis ini umumnya merupakan logam padat yang terbagi dengan halus atau oksida logam, sedangkan reaktannya adalah gas atau cairan. Katalis heterogen cenderung menarik satu bagian dari molekul reaktan karena adanya interaksi yang cukup kompleks yang belum sepenuhnya dipahami. Setelah reaksi terjadi, gaya yang mengikat molekul ke permukaan katalis tidak ada lagi, sehingga produk terlepas dari permukaan katalis. Katalis dapat siap melakukannya lagi.

2. Mekanisme alternatif

Terjadi pada katalis homogen, yaitu katalis yang mempunyai fasa sama dengan reaktannya. Katalis ini memberikan mekanisme alternatif atau  jalur reaksi yang memiliki energi aktivasi yang lebih rendah dari reaksi aslinya. Dengan demikian, reaksi dapat berlangsung dalam waktu yang lebih singkat.

Referensi:

Andy. 2009. Pre-College Chemistry.

Chang, Raymond. 2007. Chemistry Ninth Edition. New York: Mc Graw Hill.

Moore, John T. 2003. Kimia For Dummies. Indonesia:Pakar Raya.


Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 40 pengikut lainnya.